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Abstract: Many studies have focused on mediation effects, but fewer have 
focused on these in a time-to-event analysis and even fewer have focused 
on these effects in a survival model with frailty effects. The purpose of this 
study was to show unique modeling of correlated frailty effects with 
mediation and to demonstrate their use through simulations as well as on a 
real data application. We focused on a technique introduced by (Lange et al., 
2012), which involves a procedure based on Marginal Structural Models 
(MSM) that directly parameterize the natural direct and indirect effects of 
interest. Using their method of specifying the MSM structure along with a 
correlated frailty model allowed us to incorporate the unexplained 
heterogeneity still unaccounted for by these models. We were able to 
ascertain direct and indirect mediating effects in the simulations. In the 
real dataset, we were also able to demonstrate stronger frailty effect in the 
correlated frailty model accounting for mediation. 
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Introduction 

Mediation is the process through which an exposure 

causes disease. It is up to researchers to decide that some 

or all, of the total effect on an outcome operates through 

a mediator, which is defined as an effect of the exposure 

and cause of the outcome (Robins and Greenland, 1992). 

When a mediator is hypothesized, such as in our study, 

the total effect can be broken down in to two parts, direct 

and indirect effect. The direct effect is the effect of 

exposure on the outcome minus the mediator. The 

indirect effect is the effect of exposure on the outcome 

that works through the mediator. 

Galea (2013) states that in public health, it has been said 

that epidemiologists should seek to estimate parameters that 

have a logical correspondence with some realistic 

intervention that might be taken to improve population 

health. Similarly, causal inference suffers from the idea that 

one cannot estimate causal effects without some clearly 

defined exposure intervention (Glass et al., 2013). This 

fueled the debate on the usefulness of decomposing effects 

into their natural direct and indirect components. One 

argument is that because natural direct and indirect effects 

cannot be identified using intervention-based causal models 

and cannot be estimated in a randomized trial and, 

therefore, they cannot be interpreted as effects that have a 

logical correspondence with some public health action 

(Robins and Greenland, 1992). Others argue that natural 

direct and indirect effects are identifiable using causal 

inference models that make stricter assumptions in order 

to infer mechanistic relations and that many causal 

effects cannot be estimated in a randomized intervention 

trial for logistical or ethical reasons, and thus, should not 

be ruled out as a means of providing information on 

actions of different mechanisms (Pearl, 2009). 

Casual mediation analysis have existed in the survival 

analysis world. We employed a technique to allow for 

survival and causal mediation analysis. This technique 

was introduced by Lange et al., 2012, which is in the 

realm of causal mediation. Although one of the best 

known methods that also works with survival analysis is 

that of Valeri and VanderWeele (2015), which uses a 

technique for causal inference of mediation to implement 

analysis in the presence of exposure-outcome interaction 

accounting for different type of outcomes; such as 

survival. The causal inference method allows for effect 

decomposition even in the presence of exposure-mediator 

interaction. The issue is that the outcome has to be rare to 

work in the Cox model format and their method is 

cumbersome to adapt for frailty analysis. The limitations 

of their methods did not allow for the Cox proportional 

hazard model to be employed unless the outcome is rare. 
The technique introduced by Lange et al. (2012) 

involves directly modeling the natural direct and indirect 
effects of interest. Their method functions via a procedure 
based on Marginal Structural Models (MSM), which will 
directly parameterize the (Glass et al., 2013) natural direct 
and indirect effects of interest. It has tended to produce 
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more parsimonious results than current techniques, greatly 
simplifies testing for the presence of a direct or an indirect 
effect and has the advantage that it can be implemented in 
standard software like SAS or R. This approach can be 
used for any type of outcome (binary, continuous, 
survival, categorical, etc.,) and any type of mediator, even 
when exposure-mediator interactions exists. However, its 
simplicity comes at the price of relying on correct 
specifications of models for the distribution of the 
mediator and exposure and accepting some loss of 
precision compared with more complex methods. 

We have previously published our frailty model 
framework (Govindarajulu et al., 2011) and demonstrated 

its flexibility in handling univariate, multivariate, or 
correlated frailty. Frailty models have been described as 
essentially survival models with both fixed and random 
effect terms. While the fixed effects comprised the 
explained or observed portion of the model, the random 
effect term accounted for the unexplained variability of 

the model. In other words, the random effect, or frailty, 
modeled the unexplained heterogeneity in the model, 
which could be exhibited by the heterogeneity of hazard 
rates beyond recorded covariates shown in a population. 
The frailty term (Vaupel et al., 1979) was initially 
developed to describe heterogeneity at the individual 

level, but was expanded to describe heterogeneity among 
groups of individuals or within an individual. These 
were then considered levels of clustering, where an 
individual is one level of clustering (Duchateau, 2008) 
and then groups or observations within an individual 
were additional forms of clustering. 

Materials and Methods 

Mediation Framework 

We employed an already published technique to 
determine the survival and causal mediation analysis and 
then enhanced this method. The second technique 
introduced by Lange et al. (2012) involved a direct 
modeling of the natural direct and indirect effects of 
interest. This approach was applicable to survival outcomes 
with any type of mediator, even when exposure-outcome 
interactions exist. The method described by Lange et al. 
(2012) allowed us to model the natural direct and indirect 
effect yielding results simpler for reporting. We adapted the 
technique for a continuous outcome though they had mainly 
demonstrated a categorical outcome. 

We then incorporated our prior published frailty 
model, which allows for univariate, multivariate, or 
correlated frailty. With this we focused on the correlated 
frailty aspects with mediation. We have presented a 
Directed Acrylic Graph (DAG) of the causal structure of 
variable relationships along with frailty in Fig. 1 which 
is modified from Lange et al. (2012). Since frailty is 
generally multiplied onto the function of covariates in 
the hazard function, we attempted to portray its causal 
effects on the covariates but even on the mediation. 

 
 
Fig. 1: DAG with frailty effect The DAG shown illustrates 

the causal mediation relationships between F: Frailty, 

A: Exposure, M: Mediator, C: Baseline confounders 

and Y: Outcome 
 

We report our steps of setting up the MSM structure 

proposed by Lange et al. (2012) and with our final 

incorporation of the frailty:  

Step 1: Start out with g(): being a link function, in 

this case, a logit link, where a is the exposure, c are the 

covariates represented by  ′X and m is the mediator: 
 

  0 1| ,M ig E Y a c b b a X       (1) 

 
Step 2: Continuous variable comes from a normal 

distribution with mean and variance from the exposure: 

 

 2 2 2~ , ~ , ~a a a anewvar N with        (2) 

 

Step 3: Using their derivation for computing the 

weights. Generally, there is a no unmeasured 

confounders assumption but we had to modify these 

assumptions to include the frailty effect (f): Yamf  || A|C|F, 

Ma || A|C|F, Yamf  ||M|A = a, C = c, and Yamf || Ma*|C. They 

eventually derive that: 
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 (3) 

 
where, W refers to the weights. These weights from 
Equation 3 are then utilized in the modeling in Equation 4. 

Step 4: Utilizing the weights computed in Step 3 in 
the Cox proportional hazards model with correlated 
frailty, which are multiplied onto the hazard: 
 

     
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 (4) 

 
where, hij is the hazard function for the jth observation 

from the ith cluster where the cluster can be an 

individual or a group and wij is a vector of random 

effects associated with the covariates vector zij for cluster 

i observation j, which usually includes an intercept. The 

random effects account for the heterogeneity effects of the 

zij. When zij includes only an intercept, the model is a simple 

A 

C 
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multiplicative frailty model. The wij accounts for the 

correlation among individuals within a cluster. Therefore, 

this term represents frailty as univariate or multivariate. In 

univariate survival data, each cluster has only one 

individual with only one survival outcome. Multivariate 

survival data consists of a cluster of more than one 

individual. The clusters may be multiple survival outcomes 

for a single individual or one or more survival outcomes for 

multiple correlated individuals, such as relatives 

(Govindarajulu et al., 2011). 
The correlated frailty can be considered to be an 

extension of the additive polygenic model often used to 
estimate heritability for quantitative phenotypes 
(Govindarajulu et al., 2011). The assumptions of a family- 
specific frailty model is that everyone within the same 
family shares the same risk level. Persons that are not 
genetically related but are related through marriage will 
share the same family-specific effect. For the model 
described in Equation 4, in the shared frailty model, the 
random effect, wij, is the same for all individuals (j) in 
pedigree i, while in the correlated frailty model, the degree 
of genetic relationship between individuals is specified 
through the frailty. Individuals that are more closely 
related are expected to have more similar frailty, whereas 
more distant relatives and unrelated individuals have less 
similar frailty. This model might be appropriate when 
individuals in a family are correlated because of 
unmeasured genotypic effects. 

Simulation Framework 

We utilized a simulation framework akin to methods 
previously used to simulate survival data 
(Govindarajulu and Malloy, 2015; Govindarajulu et al., 
2007; 2009) adapted to correlated frailty models. We 
created 50 families. For each family, each of which ranged 
in size from 1 to 5, we simulated family id, father id and 
mother id, each generated from sampling without 
replacement between a particular range of integer values 
for each. We then randomly sampled covariates with 
replacement, allowing age to range from 25 to 90 years 
old and systolic blood pressure (SBP) from 116 to 156 
units. Gender and smoking status were binary so we 
sampled those from a uniform distribution. 

Bender et al. (2005) discussed the use of different 
distributions for generating survival times. We allowed 
for a baseline Weibull hazard (Bender et al., 2005; 
Klein, 1997), so that: 
 

   1

0h t vt   (5) 

 

depending on parameters  and ν, are chosen to generate 

realistic survival data. Survival times are found from this 

generating distribution by using the relationship between 

the hazard function, survival function, S(t) and 

cumulative distribution function (CDF), F(t), of the 

survival time random variable, T. Given the baseline hazard 

function, h0(t), the CDF is found through the relationship: 

      
1 1

H t
F t S t e


      (6) 

 
where, H(t) is the cumulative hazard function. This in 

turn is given by: 
 

        , , , ,

0
0

tx y w g x y wgH t e h u du e vt  ,  (7) 

 

where, g(x,y,w) = Tx + (1|id) is the true log hazard ratio 

defined in equation for H(t) above. Using the probability 

integral transformation, for a given t, the CDF, F, has a 

Uniform distribution on the interval from 0 to 1. 

Generating U1 from a Uniform (0,1) distribution and 

solving for t gives the simulated survival time: 
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  (8) 

 
for given values of x, y, w, θ and ν. We also incorporated 

a competing risk into the simulations. Competing risk 

times were generated in a similar manner based on an 

exponential distribution with scale parameter γ, giving: 
 

 
 

 
log 1 2

 2 ~  0,1 .cr

U
t where U Uniform




  (9) 

 
The observed survival time was taken to be the 

minimum of t0, tcr and a pre-specified end-of-study time, 
τ. An observation was considered censored if t0 was 
larger than the minimum of tcr and τ. The user-specified 
parameters, θ, ν,γ and τ were set to generate realistic 
survival time distributions. We used τ = 20 years of 
follow-up time and θ = 5 which is considered typical 
used value. The parameters, ν and γ, were chosen to 
control the amount of censoring in the simulated data. 
We had 71 cases on average in the dataset where the 
average number of cases increased across the scenarios 
from 47 to 91. The final simulated datasets contain: all 
covariates as well as the clustering variables for id, 
family id, father and mother ids, survival time, event 
indicator, center number, and physician indicator. 

Real Dataset Framework 

We examined age-at-death data from the original 

cohort of the Framingham Heart Study, the longest 

running cohort study in the United States. There were a 

total of n = 5205 individuals with age-at-death or last 

contact data, coming from 2601 nuclear and extended 

families. Of the 5205 individuals, 4653 had died, and 

552 were censored at age of last contact for this analysis. 

Families ranged in size from having a single individual 

to twenty-five individuals with age data. Most families 

(96%) contributed five or fewer members, and 38% of 

families contributed two individuals. Among the 5205 

individuals, there are 1307 first degree relative pairs (sib 

and parent-offspring pairs), 61 second degree relative 
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pairs (avuncular and half-sib pairs), and 11 third degree 

relative pairs (cousins).  

All computations were performed in R for both the 

simulations and real data analysis. In building the correlated 

frailty models, we utilized the kinship package  to 

fit the models. The kinship package has a coxme 

function fits mixed-effect Cox models, including those with 

correlated frailties. In addition, the kinship package uses 

sparse block diagonal matrices to compute and represent 

kinship matrices. 

Results 

From the real dataset application from the 

Framingham Heart Study, we utilized the dataset 

described in the Methods section with n = 5205 

individuals. We were then able to model univariate at an 

individual level as well as multivariate correlated frailty 

models with the family and sib-pair information. These 

models have been described in the Methods section. 

The simulations were based off the covariates from 

this dataset as described in the Methods, which were 

then emulated around the covariates from the real dataset 

previously described. The simulation results show that 

the natural direct effect of age is statistically significant 

with a Hazard Ratio (HR) around 2.7 (p<0.0001), while 

for 2 out of the 20 simulations, the natural indirect 

mediating effect was significant in the correlated frailty 

model without weighting (Table 1). In the correlated 

frailty model with the weighting (Table 2), it was 

statistically significant for 5 out of 20 of the simulations 

with a reduced HR rate as compared to the direct effect. 

The other covariates, gender, smoke and SBP were 

generally statistically significant in the model. 

Real dataset results showed potentially a 

significant natural direct effect and a nonsignificant 

natural indirect effect of age in all three models 

shown for correlated frailty: univariate, multivariate 

and multivariate with weighting. The natural direct 

effect appears to become more significant in the 

multivariate correlated frailty models while the 

indirect effect stays the same, including in our version 

of the correlated frailty model adjusted for mediation. 

Meanwhile the other covariates stayed statistically 

significant in each model. 

The AIC results varied across simulations and do not 

appear correlated with a significant indirect mediating effect 

(i.e., lower AIC ≈ significant indirect mediating effect). In 

the real dataset analysis, it does not seem like AIC 

improved from just shared frailty only to a multivariate 

frailty model. We also included variance of frailty results 

separately for both individual frailty, 2

p  and shared frailty, 

2

f , between families. The frailty variances for both effects 

are generally very small in the simulations on the order 

of 104 and 105 (Table 1) and then perhaps only show 

perhaps minor increases if at all in Table 2 where the 

weighting is included. In the real data analyses, the 

initial correlated frailty shows 23% of variance 

accounted for by the frailty (Table 3) but then Table 4 

shows small effect mainly for individual frailty of 

about 0.03% while the shared frailty is about 14%, 

which stays about the same in Table 5 with the 

weighted correlated multivariate frailty model. 

However, the individual frailty variance went up to > 

11% so at least from an individual level, accounting for 

causal mediation induces a stronger frailty effect. 

 
Table 1: Simulations of correlated frailty 

 Correlated frailty 

Simulation ----------------------------------------------------------- 

 Variable  Coef  S.E.  P-value  Frailty variances  AIC 

1 Age  0.9983 0.0790 <0.0001 
2

p = 0.000025 690.2971 

 Varstar -0.0007 0.0002  0.0089 
2

f  = 0.000000095 

 Gender* -0.7080 0.2040  0.0005  

 Smoke*  1.1386 0.2180  <0.0001 

 sbp  0.0035 0.0090 <0.0001 

2 Age 0.9151 0.0700 <0.0001 
2

p  = 0.000064 683.6775 

 Varstar -0.0002 0.0003 0.4374 
2

f  = 0.0000083 

 Gender* -0.5231 0.1956 0.0074  

 Smoke* 0.8753 0.2145 <0.0001 

 Sbp 0.0210 0.0086 0.0146   

3 Age  0.9657 0.0785 <0.0001 
2

p = 0.00017 697.5636 

 Varstar  -0.0006 0.0003 0.0363 
2

f  = 0.0000032 

 Gender*  -0.6150 0.2121 0.00374  

 Smoke*  1.2079 0.2302 <0.0001 

 sbp  0.0144 0.0086 0.0958   
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Table 1: Continue 

4  Age 1.0511 0.0834 <0.0001 
2

p = 0.0000087 703.8998 

 Varstar -0.0004 0.0003 0.2907 2

f  = 0.0000083   

 Gender* -0.8965 0.2172 <0.0001  
 Smoke* 0.8872 0.2338 0.0001 
 Sbp 0.0231 0.0093 0.0124 

5  Age 1.0824 0.0879 <0.0001 
2

p = 0.0217260 711.2872 

 Varstar 0.00003 0.0002 0.9004 
2

f  = 0.000103 

 Gender* -0.8869 0.2138 <0.0001  
 Smoke* 1.0238 0.2276 <0.0001 
 Sbp 0.0176 0.0091 0.0543  

6  Age 1.0352 0.0832 <0.0001 
2

p = 0.000273 701.9531 

 Varstar 0.00008 0.0003 0.8135 2

f  = 0.0000014   

 Gender* -0.86834 0.2131 <0.0001  
 Smoke* 0.9583 0.2223 <0.0001 
 Sbp 0.0157 0.0087 0.07239 

7  Age 0.9910 0.0777 <0.0001 
2

p = 0.0002456 701.4104 

 Varstar -0.00009 0.0002 0.6924 
2

f  = 0.0000279   

 Gender* -0.6559 0.2123 0.0020  
 Smoke* 1.3287 0.2306 <0.0001 
 Sbp 0.0227 0.0090 0.0119 

8  Age 1.1355 0.0916 <0.0001 
2

p = 0.000188 734.4097 

 Varstar -0.0002 0.0003 0.5375 
2

f = 0.0000064   

 Gender* -0.7939 0.2149 0.00022  

 Smoke* 1.0359 0.2261 <0.0001 

 Sbp 0.0047 0.0086 0.5827 

9  Age 0.9785 0.0793 <0.0001 
2

p = 0.0002080 688.1612 

 Varstar -0.0002 0.0003 0.4605 
2

f  = 0.0000235   

 Gender* -1.0565 0.2264 <0.0001  

 Smoke* 1.0328 0.2164 <0.0001 

 Sbp 0.0092 0.0081 0.2551 

10  Age 0.9392 0.0753 <0.0001 
2

p = 0.0380070 669.2119 

 Varstar 0.0004 0.0003 0.1452 
2

f  = 0.000143   

 Gender* -0.3910 0.2074 0.0594  

 Smoke* 0.8503 0.2065 <0.0001 

 Sbp 0.0098 0.0090 0.2763 

11  Age 1.1539 0.0942 <0.0001 
2

p = 0.0015984 722.5457 

 Varstar 0.0002 0.0003 0.5667 
2

f  = 0.0000106   

 Gender* -0.8363 0.2152 0.0002  

 Smoke* 0.8274 0.2152 0.0001 

 Sbp -0.0013 0.0091 0.8863 

12  Age 1.0943 0.0866 <0.0001 
2

p = 0.000307 726.0126 

 Varstar -0.0002 0.0003 0.3980 
2

f = 0.000000174   

 Gender* -0.7558 0.2340 0.0003 
 Smoke* 1.1868 0.2340 <0.0001  
 sbp  0.0351 0.0094 0.0002   

13  Age 0.9785 0.0769 <0.0001 
2

p = 0.0000078 701.3641 

 Varstar -0.0002 0.0003 0.4337 
2

f  = 0.0000079 

 Gender* -0.4781 0.2107 0.0233  
 Smoke* 0.5366 0.2032 0.0083 
 Sbp -0.0061 0.0092 0.5083 
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Table 1: Continue 

14 Age  1.1284 0.0922 <0.0001 
2

p = 0.00000780 726.2838 

 Varstar -0.0001 0.0003 0.7428 2

f  = 0.00000532 

 Gender* -0.7533 0.2175 0.0005  

 Smoke* 1.1410 0.2218 <0.0001 

 Sbp 0.0117 0.0086 0. 1724 

15  Age 0.0305 0.1045 <0.0001 
2

p = 0.00079382 741.9662 

 Varstar 0.0001 0.0002 0.7015 
2

f  = 0.00006725 
 Gender* -0.8628 0.2223 0.0001  

 Smoke* 1.7906 0.2715 <0.0001 

 Sbp 0.0305 0.0095 0.0013 

16  Age 0.0229 0.0793 <0.0001 
2

p = 0.0002575 708.0735 

 Varstar -0.0004 0.0003 0.1207 
2

f  = 0.0000271 

 Gender* -0.4277 0.2091 0.0409  

 Smoke* 0.8698 0.2160 <0.0001 

 Sbp 0.0136 0.0091 0.1332 

17  Age 0.0136 0.0764 <0.0001 
2

p = 0.00000714 693.8137 

 Varstar <0.0001 0.0003 0.8443 
2

f  = 0.00000562 

 Gender* 0.4597 0.2091 0.0279  

 Smoke* 1.2046 0.2246 <0.0001 

 Sbp 0.0229 0.0089 0.0101 

18  Age 0.0018 0.0786 <0.0001 
2

p = 0.0000077 695.5984 

 Varstar -0.000006 0.0003 0.9806 
2

f  = 0.0000073 

 Gender* -0.7682 0.2142 0.0003  

 Smoke* 0.5202 0.2112 0.0138 

 Sbp 0.0018 0.0096 0.8480 

19  Age 0.9980 0.0808 <0.0001 
2

p = 0.084670 695.0876 

 Varstar -0.0003 0.0003 0.2203 
2

f  = 0.0005842 

 Gender* -0.7139 0.2160 0.0009  

 Smoke* 1.1982 0.2230 <0.0001 

 Sbp 0.0358 0.0091 <0.0001 

20 Age  0.9476 0.0754 <0.0001 
2

p = 0.0001673 690.7863 

 Varstar -0.0001 0.0003 0.5821 
2

f  = 0.00002150 

 Gender* -0.8319  0.2112 0.0001  

 Smoke*  1.0914 0.2193 <0.0001 

 sbp  0.0128 0.0084 0.1270 

 

Table 2: Simulations of correlated frailty with weighting 

 Correlated frailty  

Simulation --------------------------------------------------------------------  

 Variable  Coef  s.e.  p-value  Frailty variances  AIC 

1 Age  1.0443 0.0848 0.0000 
2

p = 0.50474413  764.8039 

 Varstar  -0.0012 0.0004 0.0019 
2

f = 0.01474529  

 Gender*  -0.8697 0.2263 0.0001   
 Smoke*  1.1130 0.2303 <0.0001   
 sbp  0.0086 0.0093 0.3585  
2 Age  0.9257 0.0793 0.0000 

2

p = 0.000064 630.341 

 Varstar  0.0001 0.0005 0.8911 
2

f  = 0.0000032   

 Gender*  -0.4415 0.2255 0.0503   
 Smoke*  1.3194 0.2545 <0.0001   
 sbp  0.0199 0.0089 0.0252  
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Table 2: Continue 

3 Age  1.0573 0.0946 0.0000 
2

p = 0.0000083  647.5097 

 Varstar  -0.0006 0.0004 0.1309 2

f = 0.0000063  

 Gender*  -1.1489 0.2627 <0.0001   
 Smoke*  1.0906 0.2521 <0.0001   
 sbp  0.0147 0.0103 0.1511  
4 Age  1.0473 0.0844 0.0000 

2

p = 0.0001139  683.6146 

 Varstar  -0.0003 0.0004 0.3802 
2

f  = 0.00000182  

 Gender*  -0.9168 0.22 <0.0001   
 Smoke*  0.8437 0.2335 0.0003  
 sbp  0.0222 0.0093 0.0165 
5 Age  1.037 0.0872 0.0000 

2

p = 0.00001748  669.258 

 Varstar  <0.0001  0.0003 0.7432 
2

f = 0.000000241  

 Gender*  -0.8007 0.219 0.0003  
 Smoke*  0.9671 0.2273 <0.0001   
 sbp  0.0243 0.0096 0.0115  
6 Age  1.0402 0.0832 0.0000 

2

p = 0.00000776  711.4358 

 Varstar  <0.0001  0.0003 0.9600 
2

f  = 0.00000235  

 Gender*  -0.8668 0.2119 <0.0001   
 Smoke*  0.9521 0.2207 <0.0001   
 sbp  0.0147 0.0086 0.0893  
7 Age  0.9699 0.0755 0.0000 

2

p = 0.000279177  711.5901 

 Varstar  -0.0002 0.0002 0.4398 
2

f  = 0.000000188  

 Gender*  -0.6828 0.2057 0.0009  
 Smoke*  1.3237 0.2258 <0.0001   
 sbp  0.0231 0.0089 0.0092  
8 Age  1.17 0.0964 0.0000 

2

p = 0.00017414  799.0312 

 Varstar  -0.0004 0.0004 0.3556 
2

f  = 0.000000415  

 Gender*  -0.5384 0.233 0.0208  
 Smoke*  0.8658 0.2384 0.0003  
 sbp  0.0026 0.0095 0.7833  
9 Age  0.9608 0.0831 0.0000 

2

p = 0.1477929  649.9346 

 Varstar  0.0003 0.0005 0.4603 
2

f  = 0.0001321  

 Gender*  -1.1595 0.2615 <0.0001   
 Smoke*  1.2282 0.2583 <0.0001   
 sbp  0.0195 0.0088 0.0272  
10 Age  0.9483 0.0764 0.0000 

2

p = 0.00014645  667.4898 

 Varstar  0.0004 0.0003 0.1888 
2

f  = 0.000000139  

 Gender*  -0.4705 0.2103 0.0253  
 Smoke*  0.9037 0.2076 <0.0001   
 sbp  0.0119 0.0091 0.1891  
11 Age  1.1322 0.0954 0.0000 

2

p = 0.000122383  681.8475 

 Varstar  0.0004 0.0004 0.3981 
2

f = 0.000004319  

 Gender*  -0.7409 0.2308 0.0013  
 Smoke*  0.7973 0.2255 0.0004  
 sbp  -0.0023 0.0093 0.8073  
12 Age  1.1023 0.0881 0.0000 

2

p = 0.107791650 720.6712  

 Varstar  -0.0003 0.0003 0.4169 
2

f  = 0.000436692  

 Gender*  -0.745 0.213 0.0005  
 Smoke*  1.2564 0.2375 <0.0001   
 sbp  0.0384 0.0095 0.0001  
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Table 2: Continue 

13 Age  0.9408 0.0786 0.0000 
2

p = 0.00089252  647.8483 

 Varstar  -0.0007 0.0004 0.0958 2

f  = 0.000007128  

 Gender*  -0.5983 0.2284 0.0088  
 Smoke*  0.3572 0.2135 0.0943  
 sbp  -0.0094 0.0095 0.3227  
14 Age  1.0359 0.096 0.0000 

2

p = 0.000007683  629.254 

 Varstar  -0.0005 0.0005 0.3531 
2

f  = 0.000005401  

 Gender*  -0.3324 0.2403 0.1667  
 Smoke*  1.1852 0.2518 <0.0001   
 sbp  0.013 0.0098 0.1840  
15 Age  1.3264 0.1226 0.0000 

2

p = 0.00011563  681.8803 

 Varstar  0.0006 0.0004 0.1565 2

f  = 0.000002952  

 Gender*  -0.8028 0.2377 0.0001  
 Smoke*  1.8526 0.2958 <0.0001   
 sbp  0.0365 0.0106 0.0006  
16 Age  1.1747 0.0967 0.0000 

2

p = 0.000026318 766.0266  

 Varstar  -0.0008 0.0004 0.0899 
2

f  = 0.000001882  

 Gender*  0.3668 0.2243 0.1020  
 Smoke*  1.3909 0.2478 <0.0001   
 sbp  0.0241 0.0107 0.0241  
17 Age  1.0823 8.3322 0.8966 

2

p = 0.000006433  1917391.9 

 Varstar  0.0012 0.2663 0.9963 
2

f  = 0.0000064934  

 Gender*  -0.9187 37.855 0.9806  
 Smoke*  1.1533 2.615 0.6592  
 sbp  0.0192 0.009 0.0341  
18 Age  0.9893 0.0885 0.0000 

2

p = 0.0085066912  673.2487 

 Varstar  -0.0008 0.0004 0.0648 
2

f  = 0.0005803667  

 Gender*  -0.726 0.2379 0.0023  
 Smoke*  0.8941 0.2684 0.0009  
 sbp  0.0059 0.0121 0.6253  
19 Age  0.9992 0.0841 0.0000 

2

p = 0.1356772283  744.3109 

 Varstar  -0.0007 0.0004 0.0769 
2

f  = 0.0001395592  

 Gender*  -0.6931 0.2339 0.0030  
 Smoke*  1.0534 0.2324 <0.0001   
 Sbp  0.03 0.009 0.0008  
20 Age  1.0066 0.0891 0.0000 

2

p = 0.0003916249  647.2443 

 Varstar  0.0006 0.0005 0.2027 
2

f  = 0.0000016955  

 Gender*  -0.8721 0.2449 0.0004  
 Smoke*  1.3018 0.2492 <0.0001   
 sbp  0.0114 0.0093 0.2193  
*For gender reference level is 0, varstar is indirect effect, sbp: Systolic blood pressure 
 
Table 3: Real data Univariate correlated frailty 

Variable Coef Exp(coef) Se(coef) Z p  

age1 -0.0115 0.9886 0.0072 -1.60 0.1100 

Varstar 0.0005 1.0005 0.0005 1.02 0.1000 

Sex -0.6744 0.5095 0.0989 -6.82 <0.0001 

smoke1 0.9902 2.6918 0.096 10.31              <0.0001 

sbp1 0.0135 1.0136 0.0028 4.89 <0.0001 

n = 2578, number of events = 490 AIC: 59.09 Frailty variance: 0.2350691   
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Table 4: Real data multivariate correlated frailty 

Variable Coef Exp(coef) Se(coef) Z p 

age1 -0.0127 0.9874 0.0073 -1.74 0.0810 

varstar 0.0006 1.0006 0.0005 1.18 0.2400 

sex -0.6893 0.5019 0.0993 -6.95 <0.0001 

smoke1 0.9778 2.6587 0.0966 10.12 <0.0001 

sbp1 0.0135 1.0136 0.0028 4.85 <0.0001 

AIC: 184.32 Frailty variances: 
2

p  = 0.0003995222 

  
2

f  = 0.1421022498 

 
Table 5: Real data multivariate correlated frailty with weighting from mediation 

Variable Coef Exp(coef) Se(coef) Z p 

age1 -0.0124 0.9877 0.0073 -1.70 0.0890 

varstar 0.0005 1.0005 0.0005 1.07 0.2800 

sex -0.6838 0.5047 0.09998 -6.84 <0.0001 

smoke1 0.9844 2.6763 0.0976 10.09 <0.0001 

sbp1 0.0138 1.0139 0.0028 4.97 <0.0001 

AIC: 185.77 Frailty variances: 
2

p = 0.1107320 

  2

f  = 0.1430282 

 

Discussion 

The purpose of this study was to show unique modeling 

of these frailty effects with mediation and to demonstrate 

their use through simulations as well as on a real data 

application. We focused on a technique employed 

introduced by Lange, Vandsteelandt and Baeker1 which 

involves a procedure based on Marginal Structural Models 

(MSM) that directly parameterize the natural direct and 

indirect effects of interest. Using these MSM models along 

with a correlated frailty model allowed us to incorporate the 

unexplained heterogeneity still unaccounted for by these 

models. We demonstrated this in both simulations and a 

real dataset with a correlated frailty model including 

weighting using the methodology of Lange et al. (2012). 

We were able to ascertain direct and indirect mediating 

effects in the simulations. In the real dataset we are able 

to ascertain also stronger frailty effect in the correlated 

frailty model accounting for mediation. 
There is a broad and sustained interest in 

mediation analysis from many areas of public health 

and other fields. In particular, for time-to-event 

studies, employing survival analysis for modeling has 

been a standard and with the advent of frailty models, 

they could additionally incorporate unexplained 

heterogeneity, which generally is thought to be due to 

unmeasured confounding. While mediation analysis in 

the counterfactual methodology helps to define causal 

relationships between outcome, exposure and 

predictors, the idea of unexplained heterogeneity 

seems lost in this world, mainly relying without that 

possibility. In fact, Valeri and Vanderweele (2013) 

made these assumptions of no confounding as an 

identifiability assumption for their models incorporating 

mediation (Valeri and VanderWeele, 2015; Valente et al., 

2017; Valeri and Vanderweele, 2013). 

In terms of future work, this research can be extended 

to other datasets which can be modeled with correlated 

frailty and which also have potential mediating effects. 

Modeling different datasets with different genetic 

associations and some factor with mediating influence 

would be interesting to see how they perform with this 

new modeling. What is especially important is 

ascertaining the degree of associations amongst 

measures as we had attempted in the beginning of this 

article with a DAG to explain the counterfactual 

diagram. It might be interesting also to explore the 

weighting mechanisms behind the MSM structure. 
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