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Abstract: In the analyses presented, the soil-structure interaction is accounted 

for by means of a FE-BIE approach, in which the structure is modelled with 

displacement-based beam finite elements, whereas the boundary between 

structure and substrate is described in terms of surface tractions by means of a 

boundary integral equation incorporating a suitable Green's function. This 

mixed formulation ensures full continuity between structure and substrate in 

terms of displacements and rotations. To take account of structural 

nonlinearities, potential plastic hinges are defined at the end sections of the 

beam elements in the form of semi-rigid connections characterized by a rigid-

plastic moment-rotation relationship. The incremental analyses carried out 

emphasize the effectiveness of the model in reproducing collapse mechanisms 

and stiffness loss of the structure for increasing loads. Moreover, the adopted 

formulation is able to capture both interfacial shear tractions and vertical 

normal tractions which develop along the substrate boundary under a variety of 

loading conditions. 
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Introduction 

In the field of structural engineering, the assessment 

of the soil-structure interaction represents a challenge for 

a long time. Analytical solutions were obtained only in 

the cases of a rigid punch or an infinite beam resting on 

isotropic or anisotropic elastic half-space (Johnson, 

1985; Kachanov et al., 2003). In other cases, simple soil 

models, such as Winkler’ and Pasternak’s models 

(Selvadurai, 1979), were used. It is however worth 

noting that these models are appropriate provided that 

the effects due to transverse interaction between adjacent 

parts of the soil surface are not significant. 

As far as numerical methods are concerned, the soil-
structure interaction was analyzed following various 

approaches. In one of these, both the foundation and the 
substrate were discretized using Finite Elements (FEs), 

which allowed for describing complex soil geometries 

(Selvadurai, 1979). However, in order to ensure null 
displacements at the boundaries, the substrate mesh must be 

extended far away from the loaded area, often involving a 
huge number of FEs and a discouraging computional effort. 

To improve the numerical efficiency, infinite elements were 
proposed (Wang et al., 2005). The use, in the FE Method 

(FEM), of classical beam models for the foundation and of 
two-dimensional FEs for the soil makes to lose the 

continuity of rotations at the substrate boundary. 
In another approach, the soil behaviour is reproduced by 

a specifically suited soil model. The earliest applications of 
the elastic half-space model to soil-structure interaction 
problems were due to Cheung and Zienkiewicz (1965) and 
Cheung and Nag (1968). Those formulations, used for 
the analysis of beams and plates resting on elastic soil, 
make use of Boussinesq's solution and assume that the 
foundation structure is connected with the substrate at 
equally spaced points by means of pinned-clamped rigid 
links. Therefore, the continuity of rotations between 
beam and substrate cannot be imposed. Moreover, this 
approach requires the explicit inversion of the substrate 
flexibility matrix. A variational formulation including a 
proper Green's function for the soil was presented for the 
first time by Kikuchi (1980). Bielak and Stephan (1983) 
investigated the bending problem of beams on elastic 
soil using a Green's function which was derived from 
Boussinesq's influence function. 
A particularly advantageous tool for capturing the 

response of the elastic half-space is the Boundary 

Element Method (BEM), which allows for meshing only 
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the substrate boundary (Ribeiro and Paiva, 2015). 

However, soil tractions are typically considered as nodal 

reactions in the FE model of the foundation beam, so 

that, also in this case, the continuity of rotations between 

foundation and substrate is ignored. 

In the present paper, a mixed Finite Element-

Boundary Integral Equation (FE-BIE) formulation is 
applied to the plane state analysis of structures 

perfectly bonded to a homogeneous, linearly elastic and 
isotropic two-dimensional half-space. The model 

incorporates a displacement-based two-node beam 

formulation for the structure and combines it with an 
integral equation for the substrate boundary. This 

equation includes a Green's function for the substrate. 
Therefore, the independent variables of the proposed 

formulation are beam nodal displacements and 
rotations and soil tangential and normal surface 

tractions. An analogous formulation was used by 

Tullini and Tralli (2010; Tullini et al.., 2012) for the 
analysis of Timoshenko beams in frictionless contact 

with the substrate and of bars and thin coatings (i.e., 
mono-dimensional elements without bending stiffness), 

respectively. The same mixed model was used by 

Tullini et al. (2013a; 2013b) for the analysis of elastic 
instability of beams and frames in frictionless contact 

with the substrate. 
Differently from other formulations available in the 

literature (Cheung and Zienkiewicz, 1965; Cheung and 

Nag, 1968), the model proposed imposes, at the node 

locations, the rotation continuity between foundation beam 

and substrate boundary. In addition, this model involves 

symmetric soil matrices. The classical FEM-BEM method 

based on collocation BEM, instead, needs an additional 

computational effort to overcome the drawbacks related 

with the non-symmetry of BEM coefficient matrix. In the 

present approach, an analytical solution to the weakly 

singular BIE is determined. Therefore, there is no need for 

computing singular and hyper-singular integrals, 

representing the main drawback related with the use of 

classical BEM. Finally, the solving matrix has dimensions 

proportional to the number of foundation beam FEs. In the 

standard FEM, on the contrary, refining the mesh leads to a 

stiffness matrix with dimensions that are several times the 

square of the number of FEs used for the foundation. In 

conclusion, the mixed approach proposed allows for 

computing accurate solutions at a lower computational cost. 

As far as structural nonlinearities are concerned, in 

computer-based analyses of building frameworks under 

vertical and seismic loads the inelastic behavior is often 

located at the ends of beams and columns. Giberson 

(1969) defined the first ‘series model’, which consisted 

of a linear elastic element with a rotational spring 

attached to each end and characterized by a nonlinear 

behavior. Hence, the inelastic deformations of the 

member were lumped into the end springs and it was 

possible to select the appropriate moment-rotation 

relationship for the springs. However, the ‘series model’ 

increases the number of elements and degrees of freedom 

needed for the discretization of a frame structure. 

Moreover, in usual pushover analyses with FE models, 

plastic hinges need to be added to the initial model 

whenever a section experiences inelastic deformations. In 

order to overcome this aspect, Hasan et al. (2002) 

proposed a simple and efficient model for the pushover 

analysis of plane frames without increasing the number of 

elements and degrees of freedom. They considered 

potential plastic hinge sections in frame members as semi-

rigid connections with predefined load-deformation 

characteristics; then, the stiffness matrix of the member was 

modified without adding further elements and degrees of 

freedom to the discrete model of the structure. Furthermore, 

Shakourzadeh et al. (1999) defined a procedure for taking 

account of the semi-rigid joint deformation of three-

dimensional thin-walled frames considering membrane, 

shear, bending, torsion and warping effects. Minghini et al. 

(2009; 2010) adopted Shakourzadeh et al.’s (1999) model 

for the buckling and vibration analyses of pultruded frames 

with semi-rigid connections. 
In the following, a procedure for the incremental 

analysis of elasto-plastic structures in bilateral 
frictionless contact with an elastic half-plane is 
presented. To this aim, the method proposed by    
Hasan et al. (2002) is modified by incorporating the 
model of Shakourzadeh et al. (1999). For simplicity, a 
rigid-perfectly-plastic relation is adopted to describe the 
moment-rotation relationship of plastic hinges. 
Two examples illustrate the effectiveness of the FE-

BIE approach proposed in reproducing soil-structure 

interaction and, in the presence of an elasto-plastic 
structure, collapse mechanisms and stiffness degradation 
for increasing vertical and lateral loads. The structures 
investigated feature cross-sections typical of box culverts 
or tunnels and are considered to be made of Reinforced 
Concrete (RC). The adoption of the elastic behaviour for 

the half-plane is justified by the limited load intensity 
attained at the foundation level. 
The present investigation is based on the findings 

reported by Tezzon et al. (2015; Baraldi and Tullini, 2017). 

Variational Formulation 

A beam in perfect adhesion with a two-dimensional 
semi-infinite hal-space is considered. A Cartesian 
coordinate system (O; x, z) is defined, whith the x-axis 
coinciding with the centroidal beam axis and the z-axis 
directed downward (Fig. 1a). Beam length and cross-
section depth are referred to as L and h, respectively. The 
vertical position of the substrate boundary is therefore 
defined by coordinate z = h/2. The present formulation 
may be referred to a generalized plane stress or plane 
strain state. In this latter case, the beam and substrate 
dimension orthogonal to the plane under investigation, b, 
is assumed unitary.  
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Fig. 1: (a) Beam bonded to a two-dimensional half-space and (b) free-body diagram 
 

Small displacements and infinitesimal strains are 

adopted in the analysis. Both the beam and the substrate 

are made of homogeneous, linearly elastic and isotropic 

materials. In the following, elastic constants Eb, Gb and 

vb denote longitudinal and transverse elastic moduli and 

Poisson’s ratio of the beam, respectively, whereas Es and 

vs represent Young’s modulus and Poisson’s ratio of the 

substrate. Along the x-axis, the beam is subjected to 

distributed horizontal and vertical loads, referred to px(x) 

and pz(x), respectively and to distributed couples, m(x) 

(Fig. 1b). The assumption of perfect adhesion between 

beam and substrate leads to the existence, at the beam-

substrate interface, of horizontal shear tractions rx(x) and 

vertical normal tractions rz(x) (Fig. 1b). 

Total Potential Energy for the Foundation 

Under the assumption of positive cross-section 

rotations ϕ in counter-clockwise direction, longitudinal 

and transverse displacements for a Timoshenko beam 

may be expressed in the form: 
 

,0
( ) ( ) ( )

bx bx
u x, z u x x z= + ϕ  (1a) 

 

 ( ) ( )
bz z

u x, z u x=  (1b) 

 

where, ubx,0 and uz are the axial displacement of the 

centroidal beam axis and the vertical displacement of 

both the beam and the substrate boundary, respectively. 

The horizontal displacement of the substrate boundary is 

given by ux(x) = ubx,0(x) + ϕ(x) h/2. 

Axial and shear strains in the beam are:  
 

,0 '
b bx

u z′ε = + ϕ  (2a) 

 

b z
u′γ = + ϕ  (2b) 

 

where, a prime represents the first derivative with respect 

to x. The plane state hypothesis leads to the following 

stress-strain relationships: 
 

0
,

b b b b b
E Gσ = ε τ = γ  (3a, b) 

where, E0 = Eb or E0 = Eb/
2(1 )
b

− ν  for generalized plane 

stress or plane strain state, respectively and  

Gb = Eb/[2 (1 +vb)]. 
The elastic strain energy for a foundation beam of 

length L, Ubeam, is obtained from the sum of energy terms 
Ubeam,a and Ubeam,b, related with axial strain (subscript a) 
and bending and transverse shear strains (subscript b). 
Using Equation (2a,b) and (3a,b), Ubeam,a and Ubeam,b can 
be written as: 
 

( )
2

beam , 0 ,0

1
d

2
a b bx

L

U E A u x′= ∫  (4a) 

 

( )
22

beam,

1
[ ( ) ] d

2
b b b b b z

L

U D k G A u x′ ′= ϕ + + ϕ∫  (4b) 

 
where, Ab = bh, Db = E0bh

3
/12 and kb are cross-sectional 

area, flexural rigidity and shear correction factor, 
respectively. 

Then, the total potential energy for the foundation 

beam, Πbeam, is obtained from the sum of the following 

two terms: 
 

beam, beam, ,0
( ) d

a a x x bx
L

U b p r u xΠ = − −∫  (5a) 

 

( )

( )

beam, beam,

/ 2 d

b b z z z
L

x

U b p r u

m r h x

Π = −  −

+ − ϕ

∫  (5b) 

 

Total Potential Energy for the Substrate 

The solutions to the plane state problem for a 

homogeneous, linear elastic and isotropic substrate loaded 

by a concentrated force normal or tangential to the 

substrate boundary are known as Flamant’ and Cerruti’s 

solutions (Johnson, 1985; Kachanov et al., 2003), 

respectively. In particular, the surface displacement ui(x) 

(with i = x, z) due to a point force ˆ( )
i
P x  applied to the 

substrate boundary may be expressed in closed form as 

ui(x) = ˆ( , )g x x ˆ( )
i
P x  (Fig. 2), where Green's function 

ˆ( , )g x x  takes the following expression: 
 

ˆ2
ˆ( , ) ln

x x
g x x

E d

−

= −

π

 (6) 
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Fig. 2: Green’s function ˆ( , )g x x related to point forces ˆ( )
x
P x , 

ˆ( )
z
P x applied to the half-plane boundary 

 

In Equation 6, E = Es or E = Es/
2(1 )
s

− ν for a 

generalized plane stress or plane strain state, respectively 

and d represents an arbitrary length related to a rigid-

body displacement. 

The displacements along x- and z-axes of a generic 

point of the substrate boundary due to tractions rx and rz 

can be written as (Johnson, 1985; Kachanov et al., 2003): 

 

( )

0

ˆ ˆ ˆ( ) ( ) d

ˆ ˆ ˆ ˆ( ) d ( ) d
2

L

x x
L

x x

z z
x x

u x g x,x r x x

c
r x x r x x

E

=

 − −
  

∫

∫ ∫
 (7a) 

 

( )

0

ˆ ˆ ˆ( ) ( ) d

ˆ ˆ ˆ ˆ( ) d ( ) d
2

L

z z
L

x x

x x
x x

u x g x,x r x x

c
r x x r x x

E

=

 + −
  

∫

∫ ∫
 (7b) 

 

where, x0, xL are the horizontal coordinates of the beam end 

sections and c = 1-vs or c = (1-2vs)/(1-vs) for a generalized 

plane stress or plane strain state, respectively. 

Using the theorem of work and energy for exterior 

domains, it may be demonstrated that the total potential 

energy for the substrate, ∏soil, is given by (Tullini and Tralli, 

2010; Tullini et al., 2012): 

 

soil
( ) d

2
x x z z

L

b
r u r u xΠ = − +∫  (8) 

 

Then, substituting Equation 7a and 7b into Equation 8 

yields Πsoil = Πsoil,a + Πsoil,b, where: 

 

( ){

0

soil, 
ˆ ˆ ˆ( ) d ( ) d

2

ˆ ˆ ˆ ˆ( ) d ( ) d
2

L

a x x
L L

x x

z z
x x

b
r x x g x,x r x x

c
r x x r x x

E

Π = −

 − −   

∫ ∫

∫ ∫
 (9a) 

 

( ){

0

soil, 
ˆ ˆ ˆ( ) d ( ) d

2

ˆ ˆ ˆ ˆ( ) d ( ) d
2

L

b z z
L L

x x

x x
x x

b
r x x g x,x r x x

c
r x x r x x

E

Π = −

 + −   

∫ ∫

∫ ∫
 (9b) 

Total Potential Energy for the Foundation-Substrate 

System 

Using Equation (5) and (9) leads to express the total 

potential energy for the beam-substrate system as: 

 

, , , ,beam a beam b soil a soil b
= + + +∏ ∏ ∏ ∏ ∏  (10) 

 
which is a mixed formulation with variational functions 

represented by displacements ubx,0, uz and rotation ϕ, as 
well as interfacial shear and normal tractions rx and rz 

along the beam-substrate interface. The use of Green's 

function (6) restricts the domain of integration to the 

foundation beam length. 

Several particular cases derive from Equation 10. For 

example, in the case of a Timoshenko beam in 

frictionless contact with the soil, shear traction rx 

vanishes and Equation 10 add space reduces to: 

 

( )

( )

beam
d

ˆ ˆ ˆ( ) d ( ) d
2

L
z z z

z z
L L

U b p r u m x

b
r x x g x,x r x x

Π = −  − + ϕ 

−

∫

∫ ∫
 (11) 

 

Finite Element Model 

Both the foundation and the soil boundary are 

discretized into FEs. Although the mesh of the soil 

boundary can in theory be independent of that of the 

foundation, the same discretization will be adopted in the 

following. The ith FE is characterized by initial and end 

coordinates xi and xi+1, length li = |xi+1-xi| and 

dimensionless local coordinate  ξ = x/li. 
As usual in the displacement-based FEM, the 

unknown displacement functions may be described in 

terms of nodal quantities, collected by vectors uxi = [ux,i, 

ux,i+1]
T
 and qzi = [uz,i, φi, uz,i+1, φi+1]

T
, according with the 

following relations: 
 

( ) ( ) , [ ( ), ( )] ( )T

a xi b zi
u vξ = ξ ξ ϕ ξ = ξN u N q  (12a, b) 

 

where, vector Na(ξ) and matrix Nb(ξ) contain the 
interpolating shape functions.  

In this study, the shape functions collected by matrix 

Na(ξ) = [Na,1, Na,2] are linear Lagrangian polynomials 

Na,1 1-ξ and Na,2 = ξ, whereas matrix Nb(ξ) assembles the 

“modified” Hermitian shape functions already adopted 

by Minghini et al. (2009; 2010; Tullini and Tralli, 2010; 

Tullini et al., 2013b). 

The soil tractions for the ith element, instead, are 

approximated by the following expressions: 
 

( ) [ ( )] , ( ) [ ( )]T T

x a xi z b zi
r rξ = ξ ξ = ξr rρ ρ  (13a, b) 

 
where, rxi, rzi indicate shear and normal tractions, 

respectively, at the node locations along the substrate 

x 

z 

( )ˆ,g x x  

( )ˆ
z
P x  

( )ˆ
x
P x  

x̂  
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boundary and vectors ρa, ρb collect constant or linear 

shape functions. 

The substitution of Equation 12 and 13 into the total 

potential energy (Equation 10), assemblage over all 

elements and request of stationarity for the functional, 

yield the following system of governing equations: 

 

T

     
=    

−     

q fK H

r 0H G
  (14) 

 
where: 

 

,    ,

a xx

b xz zz

   
= =   
   

K 0 H 0
K H

0 K H H
  (15a, b) 

 

xx xz

zx zz

 
=  
 

G G
G

G G
 (15c) 

 

, ,

x x x

z z z

     
= = =     
     

u r f
q r f

q r f
  (16a, b, c) 

 

It is worth noting that Equation 14 represents the 

discrete system of equations that govern the static 

behaviour of the beam-substrate system. In the previous 

expressions, Ka, Kb are the beam stiffness matrices and 

fx, fz are the external load vectors. In addition, the 

components of matrices Hxx, Hzz, Hxz are foundation-

substrate coupling terms, whereas matrices Gxx, Gzz, Gxz, 

Gzx depend on surface tractions and are fully populated 

(Tezzon et al., 2015).  

In this study, equal substrate shape functions are used, 

i.e., ρa = ρb = ρ, resulting in the two conditions Gxx = Gzz 

and Gzx = - Gxz and in the symmetry of matrices Gxx and Gzz. 

Vectors q and r can be obtained from the solution to 

Equation 14. In particular, the following expressions hold: 

 
1 T , ( )

soil

−

= + =r G H q K K q f   (17a, b) 

 

where, Ksoil = H G
−1
 H

T
 is the stiffness matrix of the 

substrate. It is simple to show that Ksoil is symmetric. In 

fact, (Ksoil)
T
 = (H G

−1
 H

T
)

T
 = H G

−T
 H

T
 = H G

−1
 H

T
 = 

Ksoil, since matrix G is symmetric (Tezzon et al., 2015). 

It is worth noting that the second row of Equation 14, 

containing the governing equation of the discrete 

Galerkin method for the system of Equations 7a and 7b, 

includes the beam rotations due to substrate tractions. In 

particular, the compatibility of rotations between 

foundation beam and substrate is imposed through the 

introduction of the following term into Equation 5b: 

 

[ ]/ 2 d
z z x

L

b r u r h x− + ϕ∫  (18) 

Following a different approach, Cheung and Nag 

(1968; Wang et al., 2005) substituted piecewise constant 

tractions into Equation 7a and 7b and directly used those 

equations to obtain horizontal and vertical displacements 

of the substrate boundary, respectively. Such an approach 

assumes the presence of a finite number of equally 

spaced links between the foundation beam and the 

substrate. These links are pinned in correspondence of 

the foundation and clamped to the soil surface and make 

therefore to lose the rotation continuity at the interface. 

In the resulting soil matrix, rows and columns of zeros 

must then be added corresponding to the nodal rotations. 

It can also be of interest to underline that the validity 

of Equation 17a is independent of the existence of a 

foundation beam. Equation 17a, indeed, may be used to 

compute the soil surface tractions originating from the 

definition of a generic displacement field q at the 

substrate boundary. 
For a structure connected to a foundation beam, 

Equation 14 can be partitioned as reported by Tullini and 
Tralli (2010; Tullini et al., 2012). In particular, denoting 
with q1 and q2 the vectors of nodal displacements 
referred to the structure only and those shared between 
structure and foundation beam, respectively and with f1 
and f2 the corresponding load vectors, Equation (14) 
takes the form: 
 

11 12 1 1

21 22 2 2

T

     
     

=    
    −     

K K 0 q f

K K H q f

0 H G r 0

  (19) 

 

Prismatic Beam Subjected to Uniform Loads 

Beam stiffness matrices Ka, Kb and external load 

vectors fx, fz can be rewritten as: 
 

0

3
, ,

b

a a b b

E A D

L L
= =K K K Kɶ ɶ   (20a, b) 

 

,

a a b b
b b= =f f f fɶ ɶ   (20c, d) 

 

where: 

 

, ,

1 1 1
,

1 1 12

x i

a i a i

i

L p l

l

−   
= =   −   

K fɶɶ  (21a, b) 

 

2 23

, 3

2

12 6 12 6

(4 ) 6 (2 )

12 6(1 )

symm (4 )

i i

i i i i i

b i

ii i

i i

l l

l l lL

ll

l

− − − 
 + ϕ −ϕ =
 + ϕ
 

+ ϕ 

Kɶ  (22) 

 
2 2 T

,

T

[ 2, 12, 2, 12]

     (1 ) [1, 2, 1, 2]

b i z i i i i

i i i i i

p l l l l

m l l

= −

+ + ϕ ϕ − ϕ

fɶ

 (23) 
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where, coefficient φi = 12Db/
2( )

b b b i
k G A l vanishes in the 

case the shear deformation is negligible. The assemblage 

of global stiffness matrices Ka, Kb and load vectors fa, fb 

from the corresponding element matrices Kai, Kbi and 

load vectors fai, fbi is as usual. However, with a penalty 

approach it is possible to include constraint equations 

into functional ∏ (Tullini et al., 2013a; 2013b). 

Prismatic Beam with Piecewise Constant Surface 

Tractions 

In the following, only piecewise constant functions 

are used to interpolate rx and rz, i.e., the shape functions 

for the soil tractions are assumed to be ρa(ξ) = ρb(ξ) = 1. 
This assumption leads to the expressions for matrices 

( ) ,

xx zz
b E= =G G Gɶ  ( )

xz xz
bc E=G Gɶ  and H = bHɶ  

reported by Tezzon et al. (2015) in § 3.2. 

Making use of Equation 20 and Equation 14 may 

then be rewritten as follows: 
 

3

T

b
D L b b

b b E

      
=    

−      

qK H f

rH G 0
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  (24) 

 

where: 
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  (25c, d) 

 

with λ0 = L/rg and the radius of gyration rg = h/ 12 . 

Therefore, solutions (17) reduce to: 

 
-1 T

= Er G H qɶ ɶ  (26a) 

 
3 3

b soil
D L +(αL) = b  K K q fɶɶ ɶ   (26b) 

 

being 1 T

soil

−

=K HG Hɶɶ ɶ ɶ  the nondimensional stiffness 

matrix for the substrate and: 

 
33

b
L bE L Dα =  (27) 

 

Parameter αL rules the response of the foundation-

substrate system (Biot, 1937). Low values of αL 

characterize short beams stiffer than soil, whereas high 

values of αL correspond to slender beams on a relatively 

stiff soil. 

Mesh sizes of beam and substrate boundary can be 

defined independently of one another and shape 

functions different than used to obtain Equation 14 may 

be adopted as well. For example, Tullini et al. (2012) 

used quadratic Lagrangian bar elements including one or 

two equal substrate elements, whereas Tullini and Tralli 

(2010) used beam-substrate matrices obtained adopting 

four equal soil elements for each beam element. 

Foundation Beam in Frictionless Contact with the 

Substrate 

For a beam resting in frictionless contact on an elastic 

half-plane, rx = fx = 0 and Equation 14 reduces to the 

following expression: 

 

T

z zb zz

zzz zz

    
=    

−    

q fK H

r 0H G
 (28) 

 

In particular, the second row of Equation 28 contains 

the governing equation of the discrete Galerkin method 

for displacement uz(x) and relates beam rotations to 

vertical reactions. Differently, Cheung and Zienkiewicz 

(1965) proposed a collocation method to uz(x), but in this 

case no angular continuity between foundation beam and 

substrate is ensured. Accordingly, they appied a static 

condensation to beam matrix Kb, so as to cancel out rows 

and columns corresponding to the nodal rotations. 

Rigid Flat Punch with Piecewise Constant Surface 

Tractions 

With reference to the profile of a rigid flat indenter, 

the prescribed displacements are: 

 

, ,

( ) ,   ( ) ,   ( )
x x o z z o o o

u x u u x u x x= = − ϕ ϕ = ϕ  (29a, b, c) 

 

where, ux,o, uz,o and ϕo are specified at the origin x = z = 

0. Therefore, vector qo = [ux,o, uz,o, ϕo]
T
, collecting the 

displacements prescribed at the origin, governs the 

displacement field generated by a rigid flat punch. Thus, 

substituting Equation 13 into variational principle (10), 

in which terms ∏beam,a and ∏beam,b are obtained from 

Equation 5a and  5b for strain energies 

Ubeam,a = Ubeam,b = 0, assembling over all substrate 

elements and requiring the potential energy to be 

stationary, the following system of equations is obtained: 

 

T

o oo

o

     
=    

−     
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Where: 
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Vector fo collects the three external load resultants: 

 

, ,

,  

x o x z o z
L L

P p d x P p d x= =∫ ∫  (32a, b) 

 

( )
o z

L

M m p x d x= −∫  (32c) 

 

where, as vectors ho,xx, ho,zz, ho,ϕz, in the case ρa,i = ρb,i = 

1, takes the following expressions: 

 

1

, , , , , ,
,    .

2

i i
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x x
h h bl h bl

+
φ

+

= = = −  (33a, b) 

 

With regard to the FE discretization, coordinate xj of the 

generic jth node of the mesh is assumed to be given by: 
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 (34) 

 

with nel being the total number of FEs in the mesh and 

βexp the so-called grading exponent (Graham and 

McLean 2006). A uniform mesh is obtained by 

assuming βexp = 1. 

Plane Strain Linear Elastic Analysis of a RC 

Single-Cell Culvert on Elastic Substrate 

The present example is aimed at assessing the soil-

structure interaction for the realistic case of a box 

culvert (Fig. 3), that is a very common structural 

typology usually made of reinforced concrete. The 

choice of size, shape and number of cells in a culvert 

plays a fundamental role to control the water flow, 

especially during extreme weather events such as 

major floods and washouts and influences then 

significantly management and maintenance costs of 

infrastructures. 

The foundation slab of the culvert, showing 

thickness h = 1.5 m and the two 1-m thick abutments 

are cast-in-place members (Fig. 3). The abutments 

support precast I-beams mutually connected at the top 

through a 0.2 m-thick cast-in-place slab. The resulting 

ribbed slab has an overall depth of 1.7 m and is 

simply-supported at the ends. 

The generic culvert cross-section is reduced to a 

plane frame (Fig. 4) having out-of-plane dimension b = 1 

m, column height H = 6.5 m and beam span length 

L = 24.5 m.  

Locking-free Timoshenko beam elements with a 

shear correction factor kb = 5/6 are used to develop the 

numerical model of the culvert. In particular, the 

foundation (beam F in Fig. 4a) in perfect adhesion 

with the substrate is modelled using a uniform mesh 

of nel = 512 Timoshenko beam FEs. According to the 

present formulation, these elements have the 

centreline at a distance from the substrate boundary 

equal to a half of the foundation thickness. A series of 

preliminary tests confirmed that the numerical model 

ensures convergent solutions. 

With regard to the top beam (B3 in Fig. 4a), bending 

moment releases are introduced in correspondence of the 

nodes in common with columns B1 and B2 to reproduce 

the hinged connections between ribbed slab and 

abutments (Fig. 4). 

 

 
 
Fig. 3: Cross-section of the RC single-cell culvert investigated in plane strain conditions, with the foundation slab in perfect 

adhesion with the soil and the top slab simply-supported on the abutments 
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Fig. 4: Plane frame corresponding to the box culvert shown in Fig. 3, with B1 and B2, B3 and F indicating the two columns 

(abutments), the upper beam (top slab) and the foundation, respectively. The two load cases investigated are: (a) self-weight 

and (b) horizontal load px uniformly distributed along beam B3 
 

 
 
Fig. 5: Frame analysis results: (a) deflections of the frame subjected to self-weight (solid line) and lateral load (dashed line) acting 

separately; corresponding (b) horizontal (rx) and (c) vertical (rz) soil reactions; and (d) ratio rx/rz for the two load cases acting 

simultaneously. Dash-dot line in (a) represents the undeformed frame 
 
A plane strain analysis is conducted by assuming 

Young's modulus Es = 30 MPa and Poisson's ratio 

vs = 0.3 for the soil substrate and 
2/ (1 )

b b
E − ν  = 30 GPa 

for all RC elements. The stiffness parameter for the 

foundation-soil system results to be αL = 3.8. 
The two load cases shown in Fig. 4 are considered, 

i.e., the self-weight, represented in Fig. 4a by uniform 

distributions of vertical loads and a horizontal load px 

uniformly distributed along beam B3 (Fig. 4b). This load 

can be regarded as an earthquake action equal to about 

20% of the structural self-weight. 

Figure 5a illustrates with solid and dashed lines the 

deformed configurations of the culvert under self-weight 

and earthquake loads, respectively, acting not combined 

with one another, whereas the dash-dot line represents 

the undeformed configuration. The maximum vertical 
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displacement under gravity loads, equal to about 10 mm, 

is observed at the top beam midspan. The maximum 

lateral displacement due to the horizontal load is 

approximately 7 mm. 

Tangential and normal reactions underneath the 

foundation are reported in Fig. 5b and 5c, respectively, 

for the two load cases. The maximum reactions are 

obtained at the ends of the foundation beam and the 

reactions for the frame subjected to self-weight are 

always larger than for the lateral load case. With regard 

to traction rx, only two small portions of the substrate 

boundary near the ends are active (Fig. 5c). 

Finally, ratio rx/rz obtained when vertical and lateral 

loads are applied simultaneously is reported in Fig. 5d. 

For a typical sandy soil with angle of internal friction 

φs = 25 deg, parameter µsf = rx/rz = tan[(2/3)rs] = 0.3 may 

be viewed as the foundation-soil friction coefficient 

(Bowles, 1997). Wherever this friction coefficient is 

exceeded, the displacement continuity between soil and 

foundation at the substrate boundary is lost and the 

perfect adhesion hypothesis must be released. In the 

present example, with the exception of two 4 m long 

regions in proximity of the end sections, ratio rx/rz varies 

almost linearly taking values not greater than 0.2. Values 

of rx/rz greater than 0.3 are attained only in two very 

narrow portions of the foundation in correspondence on 

the connections with the abutments. 

Plastic Hinge Modeling 

In this Section, material nonlinearity will be 

introduced into the mixed formulation proposed above. 

Altough the general case of a shear flexible foundation in 

perfect adhesion with the half-plane could in theory be 

considered, Euler-Bernoulli foundations in frictionless 

contact with the substrate will be assumed for example 

purposes. Under this assumption, a generic, ith beam 

element is characterized by the following equilibrium 

equation (Equation 28): 
 

i bi zi zi zzi zi
= − +n K q f H r   (35) 

 
where, subscript i indicates quantities related to the 

generic finite element. In particular, qzi = {v1i, φ1i, v2i, 

φ2i}
T
 is the vector of nodal degrees of freedom, 

collecting vertical displacements vki and rotations φki, 

with k = 1, 2 indicating first and second element nodes. 

Vector ni = {V1i, M1i, V2i, M2i}
T
 collects nodal forces 

applied to the element, namely shear forces Vki and 

bending moments Mki, whereas Hzzi rzi represents the 

vector of equivalent nodal forces generated by the 

uniform traction underneath the beam element.  

A beam characterized by FEs with a flexural plastic 

hinge at one or both ends (Fig. 6) is now considered 

(Baraldi, 2013). The plastic hinge is modeled as a semi-

rigid connection (Hasan et al., 2002). Hence, a bending 

moment-rotation relationship (M-θ), where θ represents 

the post-elastic rotation, is introduced to describe the 

stiffness degradation of the beam cross-section following 

the formation of the plastic hinge. In particular, the 

rotational stiffness of a semi-rigid connection at the kth 

node (Chen and Lui, 2005) is substituted by the post-

elastic bending stiffness Rk = dMk/dθk of the cross-

section (Hasan et al., 2002). Moreover, the simple 

procedure proposed by Shakourzadeh et al. (1999) is 

adopted for taking account of the plastic hinge M-θ 

relation. Consequently, considering a beam FE with 

flexural plastic hinges located at the end nodes only and 

introducing the vector of post-elastic nodal 

displacements qj = {w1, θ1, w2, θ2}
T
, the joint constitutive 

relation may be written in the form: 
 

i j j
=n K q  (36) 

 
Joint stiffness matrix Kj is defined as follows: 

 

1 2
{ , , , }

j
diag R R= ∞ ∞K  (37) 

 

where, R1 and R2 are the flexural plastic hinge stiffnesses 

at the beam ends, whereas assuming infinite stiffnesses 

related to shear forces means that no post-elastic vertical 

joint displacements w1, w2 are allowed.  

The equilibrium of a generic beam element resting on 

an elastic half-plane reported in Equation 35 is replaced 

by the relation: 

 

bi zi zzi
i zizi
= − +n K q f H r  (38) 

 

where, biK  is the modified stiffness matrix of the element, 

zif is the modified equivalent load vector and 

{ }1 21 2
, , ,

T

i ii izi
v v= ϕ ϕq  is the vector of equivalent nodal 

displacements that may be splitted as follows by 

separating elastic displacements and post-elastic rotations: 
 

zi jzi
= +q q q  (39) 

 

 
 
Fig. 6: Foundation beam on elastic half-plane subdivided into 

equal FEs, with potential plastic hinges (solid circles) 

at the ends and along its length 

F 

Mu,j q 

le y 

L 

x 
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Substituting 
zi jzi
= −q q q  into Equation 35 and 

remembering Equation 36, the modified matrices and 

load vector in Equation 38 become: 
 

, ,bi zi zzi
bi zi zzi

= = =K CK f Cf H CH   (40a, b, c) 

 

where, correction matrix C (Shakourzadeh et al., 1999; 

Minghini et al., 2009; 2010) depends on the stiffness 

matrix of the element and on the plastic hinge stiffnesses 

collected in Kj: 
 

( ) ( )
11

1

j j bi bi j

−−

−

= + = +C K K K I K K   (41) 

 

Note that matrix 
zzi

H  is modified in the same way as 

stiffness matrix 
bi

K  and equivalent load vector 
zi
f , see 

Equation 40a-c. Finally, matrices bK  and zzH  and 

equivalent load vector zf  of the entire fondation are 

generated by assembling local matrices as usual. 

Classical Newton-Raphson procedure is used to carry 

out the incremental-load analysis. 

In the following, rectangular cross-sections are 

considered and, for simplicity, a rigid-perfectly plastic 

model is adopted. Thus, ultimate moment Mu,k and ultimate 

rotation θu,k completely characterize the plastic hinge 

behavior at the kth node. Furthermore, the post-elastic 

bending stiffness assumes the value Rk = ∞ when the 

section is in the elastic range (Rk = 10
9
Db in the following 

numerical examples, in order to avoid numerical 

instabilities) and Rk = 0 (Rk = 10
−6
Db in the following) when 

the corresponding bending moment reaches Mu,k. 

It is worth noting that if the beam end sections are 

both in the elastic range, matrix C reduces to the identity 

matrix I and no changes are made to element matrices 

and load vector. Conversely, if the beam ends are both in 

the plastic range, matrix C has null elements in 

correspondence of the post-elastic nodal rotation and the 

vector of nodal forces reduces to n
e
 = {V1, Mu,1, V2, M u,2}

T
 

ni = {V1i, Mu,1i, V2i, Mu,2i}
T
. 

Standard third-order Hermitian polynomials will be 

used to approximate beam vertical displacements, 

whereas soil tractions will be interpolated by means of 

piecewise constant functions. 

Plane Strain Nonlinear Analysis of a RC Box 

Culvert on Elastic Substrate 

A RC pipe on elastic half-plane is studied taking 

material nonlinearity into account by placing potential 

plastic hinges where large bending moment values are 

expected. The structure consists of a pipe or concrete box-

culvert 22.10 m long, built to grant the free flow of a 

stream under a railway line (Mancini, 2010). The cross-

section dimensions are reported in Fig. 7. Plane strain 

conditions are considered. Consequently, a pipe segment 

of unit length is assumed. The top slab is covered by a soil 

bed with thickness of 2.5 m and a ballast with thickness of 

0.8 m, yielding the uniformly distributed  loads referred to 

as qsoil and qballast, respectively (Fig. 7). Lateral abutments 

are obviously subject to the earth pressure (Fig. 7), 

linearly varying from qtop to qbottom. Furthermore, a service 

load due to a train qtrain acts on the upper beam and causes 

a pressure pearth on the left column. The values of the loads 

represented in Fig. 7 are collected in Table 1. 

The pipe is made of concrete of class C 25/30, 

reinforced with steel bars with nominal yield strength fy 

= 500 MPa; the corresponding design properties are 

computed in accordance with Eurocode 2 (CEN, 2004). 

Mancini (2010) adopted a Winkler support with a 

vertical reaction modulus c = 20 N/cm
3
. Adopting Biot's 

(1937) relation between modulus c and the elastic 

properties of the corresponding half-plane: 
 

1/3 1/3
4 4 4 4

4/3

0.710
0.282

2

s s

b b

E b E b
c

D D

   
   = =
      

 (42) 

 
the soil under the structure turns out to have the 
parameters of a soft clay, characterized by Es = 16 MPa 
and weight per unit volume γS = 19 kN/m

3
. The 

corresponding soil-structure interaction parameter αL for 
the pipe foundation is equal to 1.55. 

Structural elements were designed by Mancini (2010) 

adopting Eurocode 2 design rules. Figure 8 shows the 

actual reinforcements adopted. Each section is 

characterized by a nominal concrete cover of 35 mm. An 

ultimate moment Mu(N), depending on local axial load 

N, is defined for each cross-section where a potential 

plastic hinge is located. 

Beam-column connections are modeled as infinitely 

rigid links having length equal to one half of the 

corresponding cross-section height; then, the remaining 

parts of columns and top beam are discretized by 4 equal 

beam FEs, whereas the foundation beam is discretized 

by 8 equal beam FEs (Fig. 8). Potential plastic hinges are 

placed at the FE ends near beam-column connections, at 

foundation midpoint and at top beam and column 

midpoint, where maximum bending moment values are 

expected. Assuming a local Cartesian coordinate system 

for each element having x axis directed from left to right 

for the foundation and top beam FEs and directed 

upward for the column FEs, Table 2 reports beam FE 

ends having a potential plastic hinge. Each plastic hinge 

is characterized by a N-Mu diagram, which provides the 

ultimate bending moment of the section as a function of 

axial load. Horizontal displacements are prevented at the 

foundation level by fixing end 1 of element #17. 
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In the following, incremental analyses of the pipe 

subjected to various loads are carried out taking account 

of material nonlinearity. A rigid-perfectly plastic 

moment-rotation relationship is adopted as plastic hinge 

constitutive law. The behaviour of plastic hinge sections 

is monitored by N-M curves, which are compared with 

the corresponding N-Mu diagrams depending on section 

geometry and steel reinforcements adopted. Each 

incremental analysis is stopped when a local or global 

collapse mechanism is achieved. Then, the computed 

ultimate load is compared with an upper bound 

represented by the limit load corresponding to the 

collapse mechanism of a portal with fixed column bases. 
 

Table 1: Values of distributed loads applide to the pipe shown 

in Fig.  

Parameter Value [kN/m] 

qsoil 47.5 
qballast 14.4 
qtrain 74.5 
qtop 30.95 
qbottom 93.65 
pearth 20 

 

Table 2: Potential plastic hinge positions for the FE model of 

the pipe 

FE # Node 1 Node 2 

2, 6, 12, 14, 18, 20, 24, 26 Yes − 

5, 9, 13, 15, 19, 21, 25, 27 − Yes 

 
 

Fig. 7: Pipe cross-section (dimensions in meters) and applied loads 

 

 
 

Fig. 8: Steel reinforcement details and pipe FE model with beam element numbers; solid circles represent potential plastic hinges 
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The first example is characterized by an increasing load 

q on the top beam of the pipe (Fig. 9). The vertical 

displacement at top beam midpoint, d, is taken as a 

reference parameter to determine the load-deflection (q-d) 

curve. The first plastic hinge is formed at top beam 

midpoint (end 2 of element #13, end 1 of element #14). The 

second and third plastic hinges are formed at column tops 

(end 2 of elements #21 and #27). Then, a collapse 

mechanism for the top beam is obtained (Fig. 10). The 

ultimate load of the structure is qu,1 = 513 kN/m, which is 

quite close (96%) to the limit load that may be determined 

for a portal frame with clamped column bases and with the 

same collapse mechanism (qlim,1 = 536 kN/m). The first 

plastic hinge formation is characterized by q = 386 kN/m 

and d = 0.0094 m, whereas the second and third ones are 

formed with q = 513 kN/m and d = 0.0175 m (Fig. 11). 

The second example takes account of the self-weight 

of the pipe and considers again an increasing distributed 

load q on the top beam (Fig. 12). In this case, at equal 

incremental load q, the self-weight makes the axial force 

in the column elements increase with respect to the 

previous example. Then, ultimate loads may be quite 

different. However, similarly to the previous example, a 

local collapse mechanism for the top beam is obtained 

(Fig. 10). The ultimate load of the structure is qu,2 = 359 

kN/m, which is 32% smaller than the limit load that may 

be determined for a portal frame with clamped column 

bases and with the same collapse mechanism (qlim,2 = 528 

kN/m). In this case, for q = 0, displacement at top beam 

midpoint is nonzero due to the effect of the self-weight 

(Fig. 13). The first plastic hinge is formed for q = 234 

kN/m and d = 0.012 m. The second and third plastic 

hinge are formed for q = 359 kN/m and d = 0.027 m. 
For the purpose of comparison, a third example is 

prentented, already reported by Baraldi and Tullini 
(2017). An increasing distributed load λqtrain on the top 
beam and the corresponding increasing lateral load 
λpearth along the left column are considered, with all 
other loads remaining constant. Vertical displacement d 
at top beam midpoint (element #13, end 2 and element 
#14, end 1) is assumed as reference and λ-d curve is 
presented in Fig. 14. For λ = 0, the displacement at top 
beam midpoint is d = 0.013 m due to the effect of dead 
loads and soil pressures. 
The first plastic hinge is formed at the top of the right 

column (element #27, end 2) with λ = 3.18 and d = 0.077 

m (triangle in Fig. 14). However, after the formation of 

this plastic hinge, the slope of the load-displacement curve 

does not change significantly. The second plastic hinge is 

localised at the top beam midpoint (element #13, end 2 

and element #14, end 1) with λ = 3.45 and d = 0.082 m 

(solid circle in Fig. 14). After the formation of the 

second plastic hinge, the slope of load-deflection curve is 

quite lower than before. The third and fourth plastic 

hinges develop, almost at the same load increment, at 

foundation midpoint and at the top of the left column. 

 
 

Fig. 9: Pipe loaded by an incremental vertical force q 

uniformly distributed along the top beam 
 

 
 
Fig. 10: Collapse mechanism for the top beam 

 

 
 

 
Fig. 11: Load-deflection plot for the pipe loaded by an incremental 

vertical force q distributed along the top beam 

 

 
 

Fig. 12: Pipe loaded by self-weight and by an incremental vertical 

force q uniformly distributed along the top beam 

600 

 
400 

 
200 

 
0 

0                                          0.025 

q
[k

N
/m

] 

d[m] 

 

 536 

 513 

 q 

 q 

 Lp 

 
L 

 q 

 Lp 

 
L 



Daniele Baraldi et al. / International Journal of Structural Glass and Advanced Materials Research 2018, Volume 2: 30.45 

DOI: 10.3844/sgamrsp.2018.30.45 

 

42 

 
 
Fig. 13: Load-deflection plot for the pipe loaded by self-weight 

and incremental vertical force q distributed along the 

top beam 
 

 
 
Fig. 14: Load-deflection curve obtained from the analysis of the 

pipe under dead loads and increasing service loads 
 

 
 

 
Fig. 15: Pipe deformation during incremental analysis 
 

Then, a collapse mechanism for the top beam is obtained. 

Due to the plastic hinges at the top of the columns and at 

top slab midpoint, indeed, three aligned plastic hinges are 

obtained. Correspondingly, the ultimate load multiplier is 

λu = 3.99, with d = 0.102 m (symbol × in Fig. 14). Some 

of the deformed shapes of the pipe during the incremental 

analysis are depicted in Fig. 15.  

 

 
 

 

 
 (a) 

 

 

 
  
 

 

 (b) 

 
Fig. 16: N-M values experienced under incremental loads by 

cross-sections where plastic hinge formation is 

attained, compared with the relevant N-Mu diagrams: 

stress resultants for end section 2 of finite elements (a) 

#5 and (b) #13 corresponding to midpoints of 

foundation and top beams, respectively 
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 (a) 

 

 

 
 

 

 
 (b) 
 
Fig. 17: N-M values experienced under incremental loads 

by cross-sections where plastic hinge formation is 

attained, compared with the relevant N-Mu 

diagrams: stress resultants for end section 2 of 

finite elements (a) #21 and (b) #27 corresponding 

to the top of the columns 

Figures 16 and 17 show the bending moment 

variation as a function of the axial force for the potential 

plastic hinge sections activated by the incremental 

analysis. Axial forces turn out to be very small for the 

plastic hinge sections at the foundation and top beam 

midpoints (Figs. 16a and 16b), whereas plastic hinge 

sections at the top of the columns (Figs. 17a and 17b) are 

characterized by increasing compressive forces. 

Moreover, a slope variation in the N-M curve due to first 

and second plastic hinge development is clearly shown 

in Fig. 17a for the last plastic hinge section. 

An upper bound for the ultimate load may be 

obtained considering a portal frame with fixed column 

bases. The corresponding collapse mechanism, having 

three aligned plastic hinges along the top slab, yields a 

load multiplier λlim = 5.70, which is larger than λu 

because actual soft soil support and non-symmetric 

deformed shape of the entire pipe are neglected. 

Conclusion 

A coupled Finite Element-Boundary Integral 

Equation (FE-BIE) model for the analysis of prismatic 

beams and frames perfectly bonded to a homogeneous, 

linearly elastic and isotropic two-dimensional half-space 

is presented. The model relies upon the combination of 

the displacement-based FEM with an integral equation 

defined at the substrate boundary (BIE). The foundation 

structure is discretized into standard FEs. At the same 

time, a Green’s function is used into equations that relate 

tangential and normal displacements of the soil surface 

with surface tractions (Equation (7a, 7b)). Under the 

plane state hypothesis, the theorem of work and energy 

for exterior domains is used to develop a mixed 

variational formulation, in which the independent 

variables are nodal beam displacements and rotations 

and nodal soil tractions. To take the influence of the 

shear deformation into account, the foundation is 

described using Timoshenko beam elements. 

Extensive convergence rate tests demonstrated the 
noteworthy efficiency of the present formulation. For 
example, for an Euler-Bernoulli foundation beam with 
L/h = 10 and αL = 20 loaded by a vertical point force at 
midspan, the exponent of convergence rate Cneq

-λ
, with 

neq being the number of equations, is 1.99 for the present 

model, 1.02 for the formulation proposed by Cheung and 
Nag (1968) and lies between 0.98 and 1.02 for very 
accurate FE models using bidimensional, four-node 
finite elements (Tezzon et al., 2015). 
The formulation is then extended to the case of 

material nonlinearity. To this purpose, the efficient 

procedure proposed by Hasan et al. (2002) for pushover 

analysis of framed structures is modified by adopting the 

semi-rigid joint model proposed by Shakourzadeh et al. 

(1999). The resulting procedure allows to account for 

structural nonlinear behavior by placing potential plastic 
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hinges into the discrete model of the structure without 

adding further elements and degrees of freedom. For 

simplicity, a rigid-perfectly-plastic relation is adopted to 

describe the moment-rotation relationship of plastic 

hinges and ultimate bending moments are evaluated by 

assuming structural members made of RC. 
The proposed model is initially applied to the soil-

structure interaction analysis for a linear elastic RC box 
culvert. Assuming a state of plane strain, the culvert 
cross-section is identified with a frame subjected to self-
weight and a uniformly distributed lateral load. The 
loads are transferred to the soil by means of a shear 
flexible foundation beam in perfect adhesion with the 
substrate boundary. The foundation beam is discretized 
by means of a uniform mesh of 512 FEs. The proposed 
formulation is shown to be effective in the evaluation of 
frame deflections and soil reactions. 
Finally, the formulation is applied to the incremental-

load analysis of a pipe with rectangular cross-section in 

frictionless contact with an elastic half-plane. The 

numerical examples show the effectiveness of the model 

in reproducing the damage evolution from the first 

plastic hinge formation up to the achievement of a 

collapse mechanism. 

Further developments of this research will be 

dedicated to the extension of the proposed model to the 

three-dimensional case. 
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